#version 460 core #extension GL_ARB_bindless_texture : require const float PI = 3.141592; const float Epsilon = 0.00001; // Constant normal incidence Fresnel factor for all dielectrics. const vec3 Fdielectric = vec3(0.04); in VS_OUT { vec3 normal; vec4 colour; vec3 pos; vec2 tex_pos; vec3 material; } vin; struct Light { vec4 pos; vec4 colour; }; layout(std140, binding = 1) buffer ssbo_lights { Light lights[]; }; in flat sampler2D frag_tex; out vec4 frag_colour; uniform vec3 brightness; uniform vec3 camera_pos; uniform int lights_count; vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0); } float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float num = NdotV; float denom = NdotV * (1.0 - k) + k; return num / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } void main() { vec4 albedo = texture2D(frag_tex, vin.tex_pos) * vin.colour; float roughness = vin.material[0]; float metalness = vin.material[1]; float luminance = min(vin.material[2], 1.f); vec3 N = normalize(vin.normal); vec3 V = normalize(camera_pos - vin.pos.xyz); vec3 F0 = vec3(0.04); F0 = mix(F0, albedo.rgb, metalness); vec3 Lo = vec3(0.0); for(int i = 0; i < lights_count; i++) { Light l = lights[i]; vec3 L = normalize(l.pos.xyz - vin.pos); vec3 H = normalize(V + L); float d = length(vin.pos - l.pos.xyz); float atten = 1.f / (d*d); vec3 radiance = l.colour.rgb * atten; // cook-torrance brdf float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0); vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - metalness; vec3 numerator = NDF * G * F; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; vec3 specular = numerator / denominator; // add to outgoing radiance Lo float NdotL = max(dot(N, L), 0.0); Lo += (kD * albedo.rgb / PI + specular) * radiance * NdotL; } vec3 ambient = vec3(0.03f) * albedo.rgb * brightness; vec3 light = ambient + Lo; light = light / (light + vec3(1.f)); light = pow(light, vec3(1.f/2.2f)); light = light * (1 - luminance) + albedo.rgb * luminance; frag_colour = vec4(light, albedo.a); if(frag_colour.a == 0.f) discard; }