#version 460 core #extension GL_ARB_bindless_texture : require const float PI = 3.141592f; in VS_OUT { vec3 normal; vec4 colour; vec3 pos; vec2 tex_pos; vec3 material; } vin; struct Light { vec4 pos; vec4 colour; }; layout(std140, binding = 1) readonly buffer LightBuffer { Light lights[]; }; layout(std430, binding = 2) readonly buffer ShadowMapBuffer { samplerCube shadow_maps[]; }; in flat sampler2D frag_tex; out vec4 frag_colour; uniform vec3 brightness; uniform vec3 camera_pos; uniform float far_plane; uniform bool shadows_enabled; uniform int lights_count; vec3 FresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.f - F0) * pow(clamp(1.f - cosTheta, 0.f, 1.f), 5.f); } float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.f); float NdotH2 = NdotH*NdotH; float num = a2; float denom = (NdotH2 * (a2 - 1.f) + 1.f); denom = PI * denom * denom; return num / denom; } float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.f); float k = (r*r) / 8.f; float num = NdotV; float denom = NdotV * (1.f - k) + k; return num / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.f); float NdotL = max(dot(N, L), 0.f); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } vec3 LinRGB_To_sRGB(vec3 c) { bvec3 th = lessThan(c, vec3(0.0031308f)); vec3 high = pow(c, vec3(1.0f / 2.4f)) * vec3(1.055f) - vec3(0.055f); vec3 low = c * vec3(12.92f); return mix(high, low, th); } vec3 sRGB_To_LinRGB(vec3 c) { bvec3 th = lessThan(c, vec3(0.04045f)); vec3 high = pow((c + vec3(0.055f)) * vec3(1.0f / 1.055f), vec3(2.4f)); vec3 low = c * vec3(1.0f / 12.92f); return mix(high, low, th); } void main() { vec4 albedo = texture2D(frag_tex, vin.tex_pos); if(albedo.a == 0.f) discard; vec3 albedo_lin = sRGB_To_LinRGB(albedo.rgb) * vin.colour.rgb; albedo *= vin.colour; float roughness = vin.material[0]; float metalness = vin.material[1]; float luminance = min(vin.material[2], 1.f); vec3 N = normalize(vin.normal); vec3 V = normalize(camera_pos - vin.pos.xyz); vec3 F0 = vec3(0.04f); F0 = mix(F0, albedo_lin, metalness); vec3 Lo = vec3(0.0f); for(int i = 0; i < lights_count; i++) { Light l = lights[i]; vec3 L = normalize(l.pos.xyz - vin.pos); vec3 H = normalize(V + L); float d = length(vin.pos - l.pos.xyz); float atten = 1.f / (d*d); vec3 radiance = l.colour.rgb * atten; // cook-torrance brdf float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = FresnelSchlick(max(dot(H, V), 0.f), F0); vec3 kS = F; vec3 kD = vec3(1.f) - kS; kD *= 1.f - metalness; vec3 numerator = NDF * G * F; float denominator = 4.f * max(dot(N, V), 0.f) * max(dot(N, L), 0.f) + 1e-4f; vec3 specular = numerator / denominator; float light_m; float spec_m; if(shadows_enabled) { float max_d = texture(shadow_maps[i], -L).r * far_plane + 1e-2f; spec_m = max_d > d ? 1.f : 0.f; light_m = spec_m * 0.25f + 0.75f; } else { light_m = 1.f; spec_m = 1.f; } // add to outgoing radiance Lo float NdotL = max(dot(N, L), 0.f); Lo += (kD * albedo_lin / PI + specular * spec_m) * radiance * NdotL * light_m; } vec3 ambient = vec3(0.03f) * albedo_lin * brightness; vec3 light = LinRGB_To_sRGB(ambient + Lo); light = mix(light, albedo.rgb, luminance); frag_colour = vec4(light, albedo.a); }