#include "fluid_holder.hpp" #include "../util/constants.hpp" #include "../conversions/temperature.hpp" #include "../reactor/fuel/half_life.hpp" #include #include using namespace sim::coolant; fluid_holder::fluid_holder(fluid_t fluid, double volume, double extra_mass) : fluid(fluid), volume(volume), extra_mass(extra_mass) { } double fluid_holder::add_heat(double m1, double t1) { double t2 = get_heat(); double t = t1 - t2; double m2 = get_thermal_mass(); double m = m1 + m2; if(m1 == 0 || m2 == 0) return t1; heat = t1 - t * m2 / m; return heat; } double fluid_holder::add_fluid(double v2, double t2) { if(level + v2 > volume - 1e-3) { v2 = volume - level - 1e-3; } double m1 = get_thermal_mass(); double m2 = fluid.l_to_g(v2); double t1 = get_heat(); double t = t1 - t2; heat = t1 - t * m2 / (m1 + m2); level += v2; return v2; } double fluid_holder::extract_fluid(double amount) { if(amount < level - 1e-3) { level -= amount - 1e-3; } else { amount = level; level = 0; } return amount; } void fluid_holder::add_steam(double m2, double t2) { double m1 = get_thermal_mass(); double t1 = heat; double m = m1 + m2; if(m > 0) { heat = t1 - (t1 - t2) * m2 / (m1 + m2); } steam += m2; } double fluid_holder::calc_pressure(double heat, double volume, double mol) { double T = conversions::temperature::c_to_k(heat); double V = volume * 0.001; return V == 0 ? 0 : (mol * T * constants::R) / V; } double fluid_holder::calc_pressure_mol(double heat, double volume, double pressure) { double T = conversions::temperature::c_to_k(heat); double V = volume * 0.001; return (V * pressure) / (T * constants::R); } double fluid_holder::calc_pressure_vol(double heat, double pressure, double mol) { double T = conversions::temperature::c_to_k(heat); return 1000 * (mol * T * constants::R) / pressure; } double fluid_holder::get_pressure() const { return calc_pressure(heat, get_steam_volume(), fluid.g_to_mol(get_steam())); } double fluid_holder::get_steam_density() const { double v = get_steam_volume(); return v > 0 ? steam / v : 0; } void fluid_holder::update(double secs) { double mass = get_thermal_mass(); if(mass > 0) { // use ideal gas law to get target steam density in mol/L double heat_k = conversions::temperature::c_to_k(heat); double target_pressure = fluid.vapor_pressure.calc_p(heat); double density = target_pressure / (constants::R * heat_k) / 1000; double m_c = fluid.l_to_mol(1); double n_t = fluid.l_to_mol(level) + fluid.g_to_mol(steam); double v_l = (n_t - density * volume) / (m_c - density); double n_l = fluid.l_to_mol(v_l); if(n_l < 0) { v_l = 0; n_l = 0; } double n_diff = n_l - fluid.l_to_mol(level); double steam_add = -fluid.mol_to_g(n_diff); level += fluid.mol_to_l(n_diff); steam += steam_add; heat -= steam_add * fluid.jPg / mass; } }