fast-nuclear-sim/assets/shader/main.fsh

132 lines
3.0 KiB
Plaintext
Raw Normal View History

2024-01-31 00:12:14 +11:00
#version 460 core
#extension GL_ARB_bindless_texture : require
2024-02-23 19:23:18 +11:00
const float PI = 3.141592;
const float Epsilon = 0.00001;
2024-01-31 00:12:14 +11:00
2024-02-23 19:23:18 +11:00
// Constant normal incidence Fresnel factor for all dielectrics.
const vec3 Fdielectric = vec3(0.04);
in VS_OUT {
vec3 normal;
vec4 colour;
vec3 pos;
vec2 tex_pos;
vec3 material;
} vin;
struct Light
{
vec4 pos;
vec4 colour;
};
layout(std140, binding = 1) buffer ssbo_lights
{
Light lights[];
};
in flat sampler2D frag_tex;
out vec4 frag_colour;
2024-01-31 00:12:14 +11:00
2024-02-20 16:48:01 +11:00
uniform vec3 brightness;
2024-02-23 19:23:18 +11:00
uniform vec3 camera_pos;
uniform int lights_count;
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float num = NdotV;
float denom = NdotV * (1.0 - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
2024-01-31 00:12:14 +11:00
void main()
{
2024-02-24 18:10:29 +11:00
vec4 albedo = texture2D(frag_tex, vin.tex_pos) * vin.colour;
2024-02-23 19:23:18 +11:00
float roughness = vin.material[0];
float metalness = vin.material[1];
float luminance = min(vin.material[2], 1.f);
vec3 N = normalize(vin.normal);
vec3 V = normalize(camera_pos - vin.pos.xyz);
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo.rgb, metalness);
vec3 Lo = vec3(0.0);
for(int i = 0; i < lights_count; i++)
{
Light l = lights[i];
vec3 L = normalize(l.pos.xyz - vin.pos);
vec3 H = normalize(V + L);
float d = length(vin.pos - l.pos.xyz);
float atten = 1.f / (d*d);
vec3 radiance = l.colour.rgb * atten;
// cook-torrance brdf
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 kS = F;
vec3 kD = vec3(1.0) - kS;
kD *= 1.0 - metalness;
vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001;
vec3 specular = numerator / denominator;
// add to outgoing radiance Lo
float NdotL = max(dot(N, L), 0.0);
Lo += (kD * albedo.rgb / PI + specular) * radiance * NdotL;
}
vec3 ambient = vec3(0.03f) * albedo.rgb * brightness;
vec3 light = ambient + Lo;
light = light / (light + vec3(1.f));
light = pow(light, vec3(1.f/2.2f));
light = light * (1 - luminance) + albedo.rgb * luminance;
frag_colour = vec4(light, albedo.a);
2024-01-31 00:12:14 +11:00
2024-02-23 19:23:18 +11:00
if(frag_colour.a == 0.f) discard;
2024-01-31 00:12:14 +11:00
}