fast-nuclear-sim/assets/shader/main.fsh

169 lines
3.5 KiB
GLSL

#version 460 core
#extension GL_ARB_bindless_texture : require
const float PI = 3.141592f;
in VS_OUT {
vec3 normal;
vec4 colour;
vec3 pos;
vec2 tex_pos;
vec3 material;
} vin;
struct Light
{
vec4 pos;
vec4 colour;
};
layout(std140, binding = 1) readonly buffer LightBuffer
{
Light lights[];
};
layout(std430, binding = 2) readonly buffer ShadowMapBuffer
{
samplerCube shadow_maps[];
};
in flat sampler2D frag_tex;
out vec4 frag_colour;
uniform vec3 brightness;
uniform vec3 camera_pos;
uniform float far_plane;
uniform bool shadows_enabled;
uniform int lights_count;
vec3 FresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.f - F0) * pow(clamp(1.f - cosTheta, 0.f, 1.f), 5.f);
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.f);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.f) + 1.f);
denom = PI * denom * denom;
return num / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.f);
float k = (r*r) / 8.f;
float num = NdotV;
float denom = NdotV * (1.f - k) + k;
return num / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.f);
float NdotL = max(dot(N, L), 0.f);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 LinRGB_To_sRGB(vec3 c)
{
bvec3 th = lessThan(c, vec3(0.0031308f));
vec3 high = pow(c, vec3(1.0f / 2.4f)) * vec3(1.055f) - vec3(0.055f);
vec3 low = c * vec3(12.92f);
return mix(high, low, th);
}
vec3 sRGB_To_LinRGB(vec3 c)
{
bvec3 th = lessThan(c, vec3(0.04045f));
vec3 high = pow((c + vec3(0.055f)) * vec3(1.0f / 1.055f), vec3(2.4f));
vec3 low = c * vec3(1.0f / 12.92f);
return mix(high, low, th);
}
void main()
{
vec4 albedo = texture2D(frag_tex, vin.tex_pos);
if(albedo.a == 0.f) discard;
vec3 albedo_lin = sRGB_To_LinRGB(albedo.rgb) * vin.colour.rgb;
albedo *= vin.colour;
float roughness = vin.material[0];
float metalness = vin.material[1];
float luminance = min(vin.material[2], 1.f);
vec3 N = normalize(vin.normal);
vec3 V = normalize(camera_pos - vin.pos.xyz);
vec3 F0 = vec3(0.04f);
F0 = mix(F0, albedo_lin, metalness);
vec3 Lo = vec3(0.0f);
for(int i = 0; i < lights_count; i++)
{
Light l = lights[i];
vec3 L = normalize(l.pos.xyz - vin.pos);
vec3 H = normalize(V + L);
float d = length(vin.pos - l.pos.xyz);
float atten = 1.f / (d*d);
vec3 radiance = l.colour.rgb * atten;
// cook-torrance brdf
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = FresnelSchlick(max(dot(H, V), 0.f), F0);
vec3 kS = F;
vec3 kD = vec3(1.f) - kS;
kD *= 1.f - metalness;
vec3 numerator = NDF * G * F;
float denominator = 4.f * max(dot(N, V), 0.f) * max(dot(N, L), 0.f) + 1e-4f;
vec3 specular = numerator / denominator;
float light_m;
float spec_m;
if(shadows_enabled)
{
float max_d = texture(shadow_maps[i], -L).r * far_plane + 1e-2f;
spec_m = max_d > d ? 1.f : 0.f;
light_m = spec_m * 0.25f + 0.75f;
}
else
{
light_m = 1.f;
spec_m = 1.f;
}
// add to outgoing radiance Lo
float NdotL = max(dot(N, L), 0.f);
Lo += (kD * albedo_lin / PI + specular * spec_m) * radiance * NdotL * light_m;
}
vec3 ambient = vec3(0.03f) * albedo_lin * brightness;
vec3 light = LinRGB_To_sRGB(ambient + Lo);
light = mix(light, albedo.rgb, luminance);
frag_colour = vec4(light, albedo.a);
}